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Displacement operators constructed with the aid of all the constraints are used to derive
a form of the equations of motion which is valid for both holonomic and nonholonomic

mechanical systems, In the case of holonomic systems the equations coincide with the

familiar equations of Poincaré [1, 2],

1, Constructing the displacement operators, Let the positions of a
mechanical system with [ degrees of freedom be defined by the n variables x,, . . .
...y Zpsubject to n — [ linear constraints

n
T]JthZa”dl‘i—{—aOdt:U (]:l+1,,n) (1_'1)
i==1
on the real displacenets, and to the equations
n
©, = Zaﬁéxi:() g=1+1,...,n) (1.2)
i=1

on the virtual displacements,
Here a;;, aj, are functions of the variables ¢, z,; dz;, 8z, are the differentials and
variations ot the variables . on the real and virtual displacements of the system,
Following Chetaev [2], we complement (1,2) by a system of [ linear differential forms

(017 . o .y (1)[ (1.3)

which are independent of each other and also with respect to the forms w;q, - - «» @p
of (1.2). Next, we define the total variation of the function f (f, x,) by the formula



One form of the equations of motion of mechanical systems 387

n n
o =FoX( X=N& gz g=t..10 (1.4)
=1 i=1
Here £ are definite functions of the variables ¢, x; which depend on the choice of
forms (1. 3).
By virtue of (1.2) and (1. 4) the change (variation) of the function f on the virtual

displacements of the system is !
6f22 msXs(f) (15"
=1
The symbols X, . . ., X; are called the "operators”, and forms (1, 3) the "parame-

ters” of the virtual displacements of the system,
Similarly, we complement (1, 1) by the forms
mat, . . ., ndt, dt (1.6)

which are linear, independent both of each other and of forms (1, 1), and such that the
total differential of the function f (t, z,) is given by the formula

n n
df=at[Xo() + JX0] (K= + I8 ) (D
j=1 i=1
for which the X; are operators (1, 4),
Bearing in mind (1, 1), we obtain the change in the function f on the real displace-
ments of the system in the form !
df = dt[Xo(f) + 3} mX, ()] (1.8)
s=1
The symbols X, X;, . . ., X; are called the "operators” of the real displacements
of the system, and 1), . . ., 1; their "parameters”, Here E,' are definite functions of
the variables ¢, z; which depend on the choice of (1.6).
We can show that the system of virtual-displacement operators of a system is closed
if the mechanical system is holonomic, and that otherwise it is open,
In fact, since the outer derivative of total variation (1.4) equals zero,

n
0=(/) = 20, X;()+ D [0, 0] (X, X,)f (1.9)
j=1 (i, 7)
and since the outer derivatives o, for forms (1.2),(1. 3) can be written in the form
®, =— Z Cilog, 01 (t=1,..., n) (1.10)
(. 4)
it follows from (1, 9) that [3] n
(X, X)= D CuX,  (.i=1,...,n) (.41
t==1
Here Cjj; are functions of the variables ¢, z;. Without limiting generality we can
assume that the last » — k constraints of (1., 2) are holonomic (I < £ << n).
Then, by the Frobenius theorem [3], we must have

Cise =0 (i, y=1,.m t=Fk+ 1,..,n) (1.12)

in (1, 10), and that the commutators of the virtual displacement operators are given by
! k

(X, X)=D) C, X4+ D) CX, (s=1...1) (1.13)

=1 v=={-}1
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In the case of holonomic systems all the constraints (1, 2) are holonomic, k = I, (p4,=0,
so that, by (1, 13), the operators X;..., X; form a closed system [3]. In the case of non-
holonomic systems, when the first & — 7 constraints of (1, 2) do not form a completely
integrable system together with the remaining constraints, it follows by the Frobenius
theorem that the coefficients C,,, in( 1,13) cannot all equal zero, so that the system of
virtual displacement operators for nonholonomic systems cannot (by definition) be closed,

By a similar argument we obtain the commutators of the real displacement operators
of the system under consideration in the form

! k
o« ) r=0,1,..,1, 1.14
(X, X)= >_|Crsl‘Xl+ Z Crak, (s_—_i, ol (1
=1 v={4+1 '

where all of the C,., equal zero if the system is holonomic, Otherwise it is impossible
for all these coefficients to equal zero,

Using the terminology of the theory of groups of continuous transformations in the space
of the variables z; on constraints (1,2), we note that Xy,..., X; constitute the operators
of infinitely small transformation (1,6) with the parameters i,...,0, which transform a
point with the coordinates z; to the neighboring point z; + 0z; along constraints (1,2),
If all of constraints (1.2) are holonomic, and if the coefficients C,q in (1.13) are con-
stant (¢, = 0), the above operators form a Lie group [1,2, 3], If tie system is nonholo-
nomic and C,q and C,,, are constant, we have an incomplete Lie group whose operators
do not form a closed system,

2., The equations of motion, Let all the constraints of a mechanical system
be ideal, and let the active forces have the force function U. Substituting the expressions
for the virtual displacements of the system points defined by (1. 6),

4 1 {
6ui = 2 (‘USXS (ui). 61)5 == 2 (.I)SAXs (Ui), 6w1' = 2 (DsXs (w.‘) (2.1)
s=1

s=1 =1
(i=1,..., N)
into the general equation of dynamics, by virtue of the independence of the parameters
(O] V ., ®;, we obtain (2.2)
> il X (w) + v X, (vs) + ' X, (w)] — X, (U) =0 (¢=1,...,0)
or = N
o S el X, () + 04X, (09) + 0 X ()] — X, (U) —
==l
al , X, (1) , dX () ., dX e (w; -
— 2 mi[ui 7t + v S T o :’:O (s=1,...,0) (2.9)
=1

Here N is the number of material points of the system; u,, v, W, are the Cartesian

i
” L

coordinates of the i th point of massm;; u,, ¥; wi" are its accelerations; ul’, v,
w,’ are the velocities given (according to (1.9)) by the formulas
i

N

[
u1' = .Xo (ui) -+ Z Tls-Xs (ui)- Ui, == XO (vi) + T\sXa (v’i)
1

s§=

=1 (2.4)
vy = Xo @)+ X)) (=1, N

=1
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From (2.4) we obtain

6 17j 1 a 7i' S= Ty ey

Xow) =5, Xe)=%5, Xw) =% \/zzil,...,[ﬂ (2.5)
and from (1. 9) by virtue of (1. 14) and (1.17),
{ 1
iXs i ’ v
AEel) — X, )+ B (Cort D) 1o X () +
=1 =1 ‘
s=1,...,1 P
T R R T SRR ity BT
ve=l41 r=}

Formulas (2, 6) for the coordinates v,, w; are obtainable in similar fashion.
By virtue of (2. 5) and (2, 6) we can transform Eqs. (2. 8) into
1

d ar ar
-;k—-a—,]—s—xs(umiz (Co»erZ NCou) G —

=1
— 3 (ent S o)) =0 emtenn e

v=i41
This is the required form of the equations of motion which is valid for both holonomic
and nonholonomic systems, Here 7' is the kinetic energy of the system under considera-
tion and the (07° / on,) are given by

R N

(%) = 2 mi (' Xy (@) + v’ X (@) +wi' X (wi)] v==141,..., 8 (2.8)
’ i=1

which have the mechanical significance of the momenta associated with the parameters

1), for the so-called “associated" holonomic system with the kinetic energy 7~ obtain-

able from the system under consideration by omitting the first & — ! constraints from

(1.1) and (1.2) [4].

Equations (2, 7) coincide with the familiar equations of Poincaré [1-3] if the system
is holonomic, since all of the coefficients C,,, in (2.7) are then equal to zero, If the
system is nonholonomic, (2, 7) are equivalent to Eqs, (1. 13) of [4], since, taking { forms
(1.7) and k — [ of the forms m+1,...,Ny of (1. 1) as the parameters of the real displace-
ments of the associated holonomic system, then Egs, (1. 13) of [4] assume the form(2, 7).

The equivalence of Egs, (2,7) to the equations of Appell [4],

as A
B—F:‘YS(U) (s==1,...,1) (2.9
follows from the relations &
N
- fRY . ix (v dX ,
o5 _ 4 or ~S'm, o W (1) ERRLAP ®) s(“’)](s:ﬂ,,,_, 1) (2.10)
an, dt o, = 1t dt N di N dt '

whose right sides are (by (2, 3)) transformable into (2. 7). Here § is the acceleration
energy of the system and g/ = dn,/ dt.

When z; are generalized Lagrange coordinates and constraints (1, 1) have the special
form

ﬂ=x~—2 s e, =0 (g=14+1,..,n) @11

§=1

Egs. (2.77) become the equations of Hamel transformed to the kinetic energy 7.
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3. Examples. 1°, The equations of motion of a hoop. The posi-
tions of a hoop moving along a horizontal plane can be defined in terms of the parame-

ters 0, ¥, @, &, M, { under the constraints [6]
Mg =& — asinBOsinyd’ + acosOcospy’ + acospp’ = 0

s =M + asindcospd’ + acossingy’ + a sinpyp’ = 0
M=, —acosfd =0

Taking
N - Y'sin 8, ), = yPcosd + ¢ (3.2)

nl = e’v
as the parameters of the real displacements of the hoop, we obtain
X __i X _i : . 0 . 2 a
0="37" 1—69+as1n951n1]7¥~—asmecosqaﬁ+acosea—§ 53)
1 3 ] ) i) . a '
Xﬁ:—sin—e——'a——-d'geﬁ’ Xazw—acoswa—-asmxpa—n-
3 d d
X4=§, stgﬁ. Xs:f
The first four of these operators are the operators of the real displacements of the
hoop, Their commutators are
(Xor X1) = (Xo, Xp) = (Xo, Xg) = 0, (X1, Xp) = —(X,, X1) = —ctgdX, + X5 (3.4)
asin a cos
(le -X3):O! (XQ’ Xs)z—'(Xsy X‘.‘) == Sln(;p 4 S]new X5
For the hoop we have
T =104 + a¥)n? + An + (C + ¥y, U= —agsind (3.5)
7° =112 + 1 + 1 + 2asin0sing 41, — 2a sin6-cos b mms +

+ 2a cos 0 nns — 2a cosPngn, — 2a sinp ngng) + ...

where the ellipsis represents terms not containing n,, M5, Me.
Substituting (3, 3)—(3, 5) into (2. 7), we obtain the equations of motion of a hoop[4, 6],

(4 + a®m' — AetgOn,2 + (C + a®myn, + agcosd =0 (3.6)
An,' + A ctgh nmy — Cnmy = 0, (€ + a¥ny’ — a’nm, = 0
2°, A holonomic system of Appell, All of the constraints of the holono-
mic system considered by Appell in Sect, 469 of [6] are holonomic,
mM=t +asindd =0, n=7v =0, mM=¢ —acoshd =0 3.7)

Again taking (3.2) as the parameters of the real displacements, we obtain

0 D e R S S
X°=_at—’ X1=ae—asm6¥+acosean, =30 8xp—0tgeaq) 55
2 i} a :

=350 Xi=7g, Xe=5r, Xe=17

The real-displacement operators X,, X,, X,, X3 form a closed system, since
(Xo» X1) = (Xp, Xg) = (Xo» Xg) = 0, (X1, X;) = —(X;, Xa)=— ctgdX, + X3 (3.9

(X1, X3) = —(X3, Xy) =0, (X Xj) = —(X;, Xp) = 0

The kinetic energy and the force function of the system are
T =04 + e + An? + (€ + a)ndl, U = —agsing (3.10)
T° = Yy(m? + ng + Me® — 2asin Oy, + 2z cosOns + ...

where the ellipsis denotes terms not containing vy, 15, Me- By virtue of (3, 8)—(3,10) Egs.

(2.7) yield
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(4 + a?my’ — Actgn2 + (C + a®) gty + agcosd =0 (3.11)
Any + Actgbnm, — (€ + amme =0, (C+ o)y’ =0

These are the equations of motion of the holonomic system of Appell, They differ-from
the equations of motion of a hoop(3.6),even though they share the same expression for the
kinetic energy T. This qualitative difference is also noticeable in the fact that the dis-
placement operators of the hoop do not form a closed system,

The above examples show once again that Eqs, (2, 7) can be used without determining
in advance whether the system is holonomic or nonholonomic and which of the constraints
imposed on the system are nonholonomic (as is necessary, for example, in the case of
Egs. (1.13) of [4]).

3°., The equations of motion of Chaplygin’'s sled on an inclined
plane, Let the plane on which the sled is moving form the angle 6 with the horizontal
plane, and let Ofn be some fixed coordinate system attached to this plane; Of is the
fast-descent axis and On is the horizontal axis, Defining the positions of the sled in terms
of the coordinates £, 1 of the point of tangency A4 of the sled with the inclined plane
and by means of the angle ¢ between OF and the axis Az directed along the plane of
the wheel, we obtain the equation of the (nonholonomic) constraint in the form [7]

1, = E'sin ¢ — n'cosp = 0 (3.12)
Let us take 11 = @', 1. = E'cos@ + n'sing as the parameters of the real displace~
ments of the sled, This yields (3.13)
2 O el xy—sing-l 2
XOZW, Xl_acp X2=COS(PT9E+51HCP3.”, 3=8Ing a&—COSW an
The sled displacement operators X,, X;, X, form an incomplete Lie group since
their commutators are (Xo, X1) = (Xo» Xp) = O, (le X,) = —(Xg X)) = — X5 (3.14)

The kinetic energy T, T° and the force function U for the sled on an inclined plane
m m
ae T =5 (y"m? +me?—2Bmy),  T° =5 (ns® — 2ammns) +. .. (3.15)
U= mgsin® (£’+ acosp — P sing)

The ellipsis in the expression for T°represents the terms not containing ;.
Substituting (3, 13)—(3. 15) into (2.7) and solving them for n,’, n,’,we obtain

6
W = o5 (B — ) — et sing
T —B T—B 316
2T gsind . o A s (3.16)
M =g e (M— P + e (17— B?) cos ¢ — B sin ]
'Y :a~+62+k2

Here o, B are the coordinates of the center of mass of the sled in the moving system
Azry attached to the sled; & is the radius of gyration of the sled about the center of
mass, We note that a particular case of Eqs, (3. 16) is considered in [8].

Equations (3, 16) together with

@ =m, & =mc059, 1N =n,sing (3.17)
determine mi, m,, @, £, n as functions of the time ¢

We note that if we take 1, = ¢, n, = £’ as the real-displacement parameters of the

sled, then the resulting displacement operators do not form an incomplete Lie group,
since not all of the coefficients and their commutators are constant,
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The author is grateful to V, V, Rumiantsev for his useful comments concerning the
present study,
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PERIODIC SOLUTIONS OF SYSTEMS WITH LAG

CLOSELY RELATED TO LIAPUNOV SYSTEMS

PMM Vol 33, N3, 1969, pp.403-412

A,F,KLEIMENOV and S, N, SHIMANOV
(Sverdlovsk)
(Received December 8, 1968)

The familiar definition of Liapunov systems [1] is generalized for systems with lag, The
present paper concerns a system closely related to that of Liapunov involving a small
addition periodic in 7. A theorem concerning the existence of a periodic solution is
proved, An example is investigated.
1, Let us consider the system described by equations with lag of the form
0

dx

G-l 0am@) Lt Xt tuFE e+, 1)
where g is an n-dimensional vector and 1) (#) is an n X n matrix of the functions
1,; (9) with bounded variation defined on the segment [— T, 0]; the integral is to be
mterpreted in the Stieltjes sense; X (x (9)) = { X, (z (8))} is a nonlinear functional
defined on the piecewise continuous tunctions (1‘}), — 1 < ¥ <{ 0 (with discontinu-
ities of the first kind) bounded in norm, i. e,

|z (8)] =sup (| oy (D), . . ., | 2y (B)])s ——T<ﬁ<0 (1.2)

Substituting any vector function Z (y, ) analytic in y and differentiable with respect
to 9 into the functional X (z (#)) , we obtain the analytic function X (z (y, 9)) =

= X (y).




