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Displacement operators constructed with the aid of all the constraints are used to derive 
a form of the equations of motion which is valid for both holonomic and nonholonomic 
mechanical systems. In the case of holonomic systems the equations coincide with the 

familiar equations of Poincark [1,2]. 

1, Conorructing the displacement oparator:. Let the positions of a 
mechanical system with I degrees of freedom be defined by the n variables 51r . . . 

. .., X, subject to n - I linear constraints 

qjdt G i ajidri +a,dt=O (i=l-+i,...,n) (1.1) 
i=l 

on the real displacenets, and to the equations 

(1.2) 
i=l 

on the virtual displacements. 
Here aji, aio are functions of the variables t, xi; dxi, 6xi are the differentials and 

variations of the variables xi on the real and virtual displacements of the system. 
Following Chetaev p], we complement (1.2) by a system of I linear differential forms 

01, . . *, 01 (1.3) 

which are independent of each other and also with respect to the__forms o~,_~, . . ., 61, 
of (1.2). Next, we define the total variation of the function f (t, xi) by the formula 
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w = i %X,(f), Xj = i kji +& (j=l,..:n) (l-4) 
j=1 i=l 

Here Eli are definite functions of the variables t, xi which depend on the choice of 

forms (1.3). 
By virtue of (1.2) and (1.4) the change (variation) of the function f on the virtual 

displacements of the system is 

6f = f: %Xs (f) (1.51 
r=* 

The symbols X,, . . . , Xl are called the “operators”, and forms (1.3) the “parame- 
ters” of the virtual displacements of the system. 

Similarly, we complement (1.1) by the forms 

qldt, . . ., rjrdt, dt (1 .ti) 

which are linear, independent both of each other and of forms (1. l), and such that the 
total differential of the function f (t, xi) is given by the formula 

df = dt [X0 (0 + i rljxj (fl] txO = & + i Eoi &j (1.7) 
j=l i=l 

for which the Xi are operators (1.4). 
Bearing in mind (1. l), we obtain the change in the function f on the real displace- 

ments of the system in the form 

df = & [x0 (f) + i %X* (f)] (1.8) 
S=l 

The symbols X,, X,, . . ., Xl are called the “operators” of the real displacements 
of the system, and ql, . . ., ql their “parameters”. Here Esi are definite functions of 

the variables t, xi which depend on the choice of (1.6). 
We can show that the system of virtual-displacement operators of a system is closed 

if the mechanical system is holonomic, and that otherwise it is open. 
In fact, since the outer derivative of total variation (1.4) equals zero, 

6 = (60 = i @I’xj (f) + 2 [Oi, q (Xi, X3) f (I.91 
j=l (i, j) 

and since the outer derivatives ot’ for forms (1.2), (1.3) can be written in the form 

at ‘=- 2 Cijl[Oi, Wj] (t=1,.. .( n) (2.10) 
(i. j) 

it follows from (1. 9) that [3] 

(Xi, xj)= i CljlX, (i, j=‘l,. . ., n) (I .11) 
1=1 

Here Cijt are functions of the variables t, zi. Without limiting generality we can 
assume that the last n - k constraints of (1.2) are holonomic (I < k < n). 

Then, by the Frobenius theorem [3], we must have 

Cijl = 0 (i, I’= l,..., n; t = k + I,..., n) (1.12) 

in (1. lo), and that the commutators of the virtual displacement operators are given by 

(“,, Xs) = i Crs,X, + 5 C,,Jy (P, s = 1, . . ., 1) (1.13) 
i=l v=/+1 
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In the case of holonomic systems all the constraints (1.2) are holonomic, k = 1, C,,,=O. 

so that, by (1.13), the operators Xl,... , XI form a closed system [3]. In the case of non- 
holonomic systems, when the first k - 1 constraints of (1.2) do not form a completely 

integrable system together with the remaining constraints, it follows by the Frobenius 
theorem that the coefficients C,,, in (1.13) cannot all equal zero, so that the system of 
virtual displacement operators for nonholonomic systems cannot (by definition) be closed. 

By a similar argument we obtain the commutators of the real displacement operators 

of the system under consideration in the form 

vr, X8) i cr*,x, + i c,,.,x., = (r 0, 1,. . ., 11 = 
1 

(l.llt) 
., I L=1 

V=i+l 
G,sEl,. 

where all of the C,.,” equal zero if the system is holonomic. Otherwise it is impossible 
for all these coefficients to equal zero. 

Using the terminology of the theory of groups of continuous transformations in the space 

of the variables xi on constraints (1.2), we note that Xl,..., Xr constitute the operators 
of infinitely small transformation (1.6) with the parameters WI,.. . ,wI which transform a 
point with the coordinates xi to the neighboring point T$ -k bxi along constraints (1.2). 
If all of constraints (1.2) are holonomic, and if the coefficients crsl in (1.13) are con- 

stant (C,,, = o), the above operitors form a Lie group [l, 2.31. If tire system is nonholo- 

nomic and Crsf and C,,, are constant, we have an incomplete Lie group whose operators 

do not form a closed system. 

2. The equation8 of motion. Let all the constraints of a mechanical system 
be ideal, and let the active forces have the force function u. Substituting the expressions 

for the virtual displacements of the system points defined by (1.6), 
I 

6Ui = 2 W,X, (Ui)? au+ = i 0),X, (Ui), bwi = i o,X,(zq) (2.1) 
s=, >=I S=l 

(i=,I, . . ..iv) 

into the general equation of dynamics. by virtue of the independence of the parameters 

or, * . 0, wr, we obtain 
(2.2) 

5 mi[ui”X,(u~)$Vi”Xs(Vi)+wi”X,(wi)]-X~(li)=O (.s-l,...,I) 
i=l 

or 

$- 2 mi [Ui’Xis (Ui) + Ui’Xs (Vi) + ZL‘i’Xs (U-i)] - X,(U) - 

Here N is the number of material points of the system ; ui, zii, wi are the Cartesian 
coordinates of the i th point of mass mi; Ui O, pi”, Wi” are its accelerations ;. UL’, Pi’, 
to i’ are the velocities given (according to (1.9)) by the formulas 

’ = X0 (I&) + i 
1 

74 %Xi, (4. Vi’ == X()(Ui) + 2 QX, (Vi) 
s=1 

zci ’ zz X0 (Wi) + i ll,dX,(Wi) 

S=l 

(i-l,... ,N) 
(2.4) 

\=I 



One form of the equations of motion of mechanical systems 389 

From (2.4) we obtain 

x, (Ui) = a+ , x, (Vi) = ag , X,(tf+) = $$ /s=l,..., f 
\i=l,..., N ) (2.5) 

s 

and from (1.9) by virtue of (1.14) and (1.17). 

Formulas (2.6) for the coordinates vui, wi are obtainable in similar fashion. 

By virtue of (2.5) and (2.6) we can transform Eqs. (2.6) into 

This is the required form of the equations of motion which is valid for both holonomic 

and nonholonomic systems. Here T is the kinetic energy of the system under considera- 

tion and the (dT” / dqy) are given by 

Kj= i “?i [Ui’Xv (Ui) + V$‘X” (UJ + q’Xv(zui)] (Y=;f +I,. . . , k) (2.8) 
\ ’ /’ i=l 

which have the mechanical significance of the momenta associated with the parameters 
?$, for the so-called “associated” holonomic system with the kinetic energy T” obiain- 

able from the system under consideration by omitting the first k - .l constraints from 

(1.1) and (1.2) [4]. 
Equations (2.7) coincide with the familiar equations of Poincare [l- 31 if the system 

is holonomic, since all of the coefficients C,,, in (2.7) are then equal to zero. If the 

system is nonholonomic, (2.7) are equivalent to Eqs, (1.13) of [4]. since, taking 1 forms 
(1.7) and k - I of the forms rk+l,..., 11~ of (1.1) as the parameters of the real displace- 

menrs of the associated holonomic system, then Eqs. (1.13) of [4f assume the form(2.7). 
The equivalence of Eqs. (2.7) to the equations of Appell f4]. 

follows from the relations 

(2.n) 

whose right sides are (by (2.3)) transformable into (2.7). Here S is the acceleration 
energy of de system and Q’ = dqs ,f dt. 

When CZ~ are generalized Lagrange coordinates and constraints (1.1) have the special 
form 

%& Ze xJr - i nlSxg’ - aj, = 0 (f=z+f,...,n) (2.21) 
s=1 

Eqs. (2.7) become the equations of Hamel transformed to the kinetic energy 2’. 
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3. Examples. 1”. The equations of motion of a hoop. Theposi- 

tions of a hoop moving along a horizontal plane can be defined in terms of the parame- 
ters 6,$, cp, 4, 11, 5 under the constraints [6] 

q4 s F' - a sin 6 sin$W + a cos 0 cos$$ j- a COSI&’ = 0 

Q 3 11’ + a sin 6 CoS$6’ + a cos 0 sin*+’ + a sin$cp’ = 0 (3.1) 

Taking 
rk = 5’ - a cos 60’ = 0 

91 = 8’3 q2 mz *‘sin 6, ‘I:, = $cos 6 + ‘p’ (3.2) 
as the parameters of the real displacements of the hoop, we obtain 

x0=& 
a 

X1=W+asin9sin~~-,sinecosIlr 
&+ 

a 

1 a 

a cost3 ap 
(3.3) 

x?=----. ctg 6 J& 9 
a a a 

sin6 &# X3=a(P-acns$~-asin.J1~ 

a 
xu=,E, 

d 
x5=%, 

a 
X6 =al; 

The first four of these operators are the operators of the real displacements of the 
hoop. Their commutators are 

(X0, Xl) = (X0, X.2) = (X0, X3) = 0, 

(Xl, X3) =o, 

(Xl, X3) = -(X3, X1) =a;;$% + x3 (3.4) 

(X,, X3)=-(X3, X,) = ++) X4-SjneX" 

For the hoop we have 

2’ = %[(A + a2)r1r2 -I- An,2 -I- (C -I- a2)r13”l, U = -agsin9 (3.5) 
T” = l/z(qu2 + qb2 + qaa + 2 a sin 6 sing qlq4 - 2a sin 6.~0s 9 q1q5 + 

+ 2a cos 6 qlrk - 2a cos1) n3n4 - 2a sin* n3rk) + . . . 

where the ellipsis represents terms not containing q4, Q,, Q. 

Substituting (3.3)-(3.5) into (2.7). we obtain the equations of motion of a hoop[4,6], 

(A + a2)rll’ - A ctg 0q22 f (C + a2)q,q3 + ag cos 0 = 0 (3.6) 

-4%’ + A c&6 rllqz - cm3 = 0, (C + a%31 - a2qo12 = 0 

2'. A holonomic system of Appell. All of the constraints of the holono- 

mic system considered by Appell in Sect.469 of [6] are holonomic, 

rj4 s 5’ + a sin 66’ = 0, q5 = n’ = 0, T)e G 5’ - aCos60’ = 0 (3.7) 

Again taking (3.2) as the parameters of the real displacements. we obtain 

a a 
g+ 

a X22--a- a 
x0=,,, X1=x-asin a cos 0 q , sine ay w e acp 

a a a a (3.8) 
x3=5p X4=x, X5==, X6 = ag 

The real-displacement operators X0, X1, X,, X3 form a closed system, since 

(X0, X,) = (X,, X,) = (X,, X3) = 0, (XI, X,) = -_(x,, X,)= - ctgex, t- x3 (3.9) 

(X1, X3) = -(X3, Xl) = 0, (X3, X3) = -(X3, X2) = 0 

The kinetic energy and the force function of the system are 

T = %[(A -I- a2)q12 i- Asa” -i- (C f a2)$l, U = -agsin0 (3.10) 

To = l/z(q42 f qb2 + qa2 - 2a sin 6$n4 -/- 2a cos 6nr?k i- . . . 

where the ellipsis denotes terms not containing n4, Q,, Q. By virtue of (3.8)-(3.10) Eqs. 

(2.7) yield 
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(A + uvll - A ctg et),2 + (C + n2) q‘& + ag co9 8 = 0 (3.11) 

Aq2’ + A ctg ‘~QQ - (C + e2)rlrrls = 9, (C + aa)?j; = 0 

These are the equations of motion of the holonomic system of Appell. They differ-from 
the equations of motion of a hoop( 3.6).even though they share the same expression for the 

kinetic energy T. This qualitative difference is also noticeable in the fact that the dis- 

placement operators of the hoop do not form a closed system. 
The above examples show once again that Eqs. (2.7) can be used without determining 

in advance whether the system is holonomic or nonholonomic and which of the constraints 
imposed on the system are nonholonomic (as is necessary, for example, in the case of 

Eqs. (1.13) of [4] ). 
3O. The equations of motion of Chaplygin’s sled on an inclined 

plane. Let the plane on which the sled is moving form the angle 6 with the horizontal 
plane, and let @,T) be some fixed coordinate system attached to this plane ; OE, is the 
fast-descent axis and 0~) is the horizontal axis. Defining the positions of the sled in terms 

of the coordinates E, tl of the point of tangency A of the sled with the inclined plane 
and by means of the angle cp between Oe and the axis Az directed along the plane of 

the wheel, we obtain the equation of the (nonholonomic) constraint in the form fl] 

9s E E’sin cp - rj’cos(p = 0 (3.12) 

Let us take nr = cp’, Q = F’coscp + q’sincp as the parameters of the real displace- 
ments of the sled. This yields (3.13) 

a a d a a a 
X0== 1 xr=acp. Xz = cos cp z + sin cp q, Xa=sincpz- coscpag 

The sled displacement operators X0, X1, X2 form an incomplete Lie group since 
their commutators are 

(X0, Xl) = (X0, X,) = 0, (XI, X,) = -(X2, Xl) = - x2 (3.14) 

The kinetic energy T; To and the force function U-for the sled on an inclined plane 
are 

7’ = y (r2nr2 + qz2 - 2/3n1~), T” = T (ns2 - 2zThns) + . . . (3.15) 

U = mgsin6 (5 + acoscp - psinq) 

The ellipsis in the expression for To represents the terms not containing Q. 

Substituting (3.13)-(3.15) into (2.7) and solving them for Q’, q2’,we obtain 

(3.16) 
[(~2- p2)cos cp-up sin cp] 

y2 = a2 + f+ + k2 

Here a, fi are the coordinates of the center of mass of the sled in the moving system 
Ary attached to the sled ; k is the radius of gyration of the sled about the center of 
mass. We note that a particular case of Eqs. (3.16) is considered in [8]. 

Equations (3.16) together with 

cp’ = rll, g’ = Q cos cp, n’ = tj2sincp (3.17) 

determine 91, q2, (p, E, 9 as functions of the time t. 
We note that if we take T)I = cp’, q2 = c’ as the real-displacement parameters of the 

sled, then the resulting displacement operators do not form an incomplete Lie group, 
since not all of the coefficients and their commutators are constant. 
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PERIODIC SOLUTIONS OF SYSTEMS.WITH LAG 

CLOSELY RELATED TO LIAPUNOV SYSTEMS 
PMM Vol. 33, W3, 1969, pp.403-412 

A. F. KLEIMENOV and S. N. SHIMANOV 
(Sverdlovsk) 

(Received December 8, 1968) 

The familiar definition of Liapunov systems [l] is generalized for systems with lag. The 
present paper concerns a system closely related to that of Liapunov involving a small 
addition periodic in t . A theorem concerning the existence of a periodic solution is 

proved. An example is investigated. 

1, Let us consider the system described by equations with lag of the form 
0 

dx 
dt= s ~(t+6)dy(6)+X(z(tt6))+CLF(t,IL(t+6),CL) (1.1) 

-r 

where IL: is an n-dimensional vector and r (6) is an n x n matrix of the functions 
vii (6) with bounded variation defined on the segment [-- ‘t, 01; the integral is to be 
interpreted in the Stieltjes sense ; .X (z (6)) = {Xi (CE (6))) is a nonlinear functional 
defined on the piecewise continuous functions z (6), - z < 6 < 0 (with discontinu- 
ities of the first kind) bounded in norm, i.e. 11 z (6) I/ < R, where R > 0, 

Substituting any vector function IL: (y, S) analytic in y and differentiable with respect 

to 6 into the functional X (x (6)) , we obtain the analytic function X (Z (y , 6)) = 

= Xl (!I). 


